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Abstract
The paper proposes a embedded surface road clas-
sifier for smartphones used to track and classify
routes on bikes. The main idea is to provide, along
with the route tracking, information about surface
quality of the cycling route (is the surface smooth,
rough or bumpy?). The main problem is the quan-
tity of accelerometer data that would have to be up-
loaded along with GPS track, if the analysis was
done off-line. Instead, we propose to classify road
surfaces online with an embedded classifier, that
has been trained off-line. More specifically, we rely
on the accelerometer of a bicycle-mounted smart-
phone for online classification. We carry out exper-
iments to collect cycling tracks consisting of GPS
and accelerometer data, label the data and learn a
model for classification, which again is deployed
on the smartphone. We report on our experiences
with classification accuracy on and runtime perfor-
mance of the classifier on the smartphone.

1 Introduction
The main motivation of this work is to provide a community
based cycling route road quality classification service. There
are many community based services providing cycling routes
together with altitude profiles, but none of them is providing
information about the road quality of the route, i.e. whether
the road is smooth, rough, or bumpy. Many bicycling com-
munity web-portals like [http://www.bikemap.net] offer facil-
ities for uploading and downloading GPS tracks for cycling
routes. To our knowledge, none of them provides information
about road surface quality of the cycling route. Route quality
information could be gathered together with GPS track using
the accelerometer data coming from bicycle mounted smart-
phone. Obviously, including all accelerometer raw data in the
data upload would increase data traffic significantly and may
not be tolerable for the user, especially when gathering long
tracks. The solution is to implement a road surface classifi-
cation algorithm on the smartphone and to upload the clas-
sification results together with the GPS track. Similar ap-
proaches already have been successfully applied for other ve-
hicles than bicycles. Pothole detection using GPS data and
accelerometer data with dedicated hardware devices mounted

in Taxi cabs has already been successfully explored in [Eriks-
son et al., 2008], [Strazdins12 et al., 2011] and [Mednis et
al., 2012] investigate road condition monitoring for vehicular
sensor networks based on time series analysis. We investi-
gate experimentally, whether we can achieve a road surface
classification using smartphones mounted on bicycles. In or-
der to cope with the restricted computational power of these
devices, we apply a machine learning approach: we learn a
classifier off-line on a standard PC and apply the classifier
online on the smartphone.

We collected GPS tracks and acceleration data (based on
the mobile phone’s accelerometer sensor) and applied two
different approaches for classification of road surface qual-
ity, both based on standard machine learning classifiers: in
a direct segmentation classification approach, we used man-
ual labeling of road segments of fixed length (smooth, rough,
bumpy) to train a classifier, based of various parameter set-
tings for feature extraction. The best result that we obtained
in a cross-validation was a 20% increase of accuracy against a
standard Kappa-Statistics. In a second approach, we trained
a classifier for detecting bumps. Here we achieved an ac-
curacy of 97%. Using this bump detector, we performed a
threshold-based road segment classification, which delivered
much more comprehensible results. A closer look at input
data, manual labeling, classification results, and comparison
with the real-world, revealed that the manual labeling was er-
ror prone . We conclude that the simple bump-detector based
classification approach can be used for road surface quality
classification and even does not require further manual label-
ing of road segments.

2 Classification approach and Results
Most of today’s smartphones are equipped with GPS and ac-
celeromater sensors. In order to ensure that our algorithm
performs not only on today’s top range models, we carried
out the experiments with a 2-years old Nokia 5800, one of
the first mass models providing accelerometer data. Figure
1 illustrates a track of accelerometer data collected with a
smartphone.

Figure 1 shows the length of the accelerometer vector plot-
ted over a track. We see that the data provides a more or
less continuos signal (at 37 Hz in our case) over the complete
track. As we want to explore a machine learning classifica-
tion approach for road surface classification, we first have to



Figure 1: This figure shows a recorded test track of one road.
The peeks s in this chart are bumps on the road. The smart-
phone was attached to the handle of the bike

define the features which are used to train the classifier. The
raw data consists of GPS positions and their time stamps, and
acceleration values only. Acceleration values are represented
by a three-dimensional vector. In a first step, we extract as
many features from the data as possible and evaluate experi-
mentally, which feature selection yields the best classification
result.

In our first approach to classification described in section
2.1, we divide the road into segments of varying length. In our
second approach described in section 2.2, we just consider
two subsequent GPS points as boundary of a segment. In
both cases, we get a segmentation of the cycling route in a
sequence of segments as shown in Figure 2. As a result, the
recorded acceleration data is associated to a certain segment.

Figure 2: This figure shows how a track will be segmented
into a set of segments

The segmentation shown in 2 allows to indicate, which po-
sition of the road has a certain surface property or would even
contain potholes. We can now analyze segment by segment
depending on the data recorded for the segment and make
statements about its road surface quality. These information’s
can be used as features for our machine learning approach.
At the end each segment contains GPS and acceleration data
which can be used for creating features for this segment.

Features which can be extracted from the GPS data are
speed and inclination. To simplify the handling of the accel-
eration data provided by the accelerometer, which is made up
of an 3D vector, we will further use L2-norm of this vector
which is defined as ||x|| =

√
x2
1 + . . .+ x2

n. The example
shown in Figure 1 already illustrates, that changes in these

values and sometimes even potholes can be detected by (hu-
man) visual inspection of the data. For our machine learning
approach, we extract the mean, the variance and the standard
deviation of the acceleration values of a segment as features
for this segment.

2.1 Direct road surface classification
In this section, we apply standard classification methods to
segments of varying length, based on the features described
above. For our analysis we consider a number of previ-
ous segments which are before the segment that we want
to classify. We define a whole road as a set of segments
S = {s1, s2, . . . , sn}. We consider the previous x segments
si−x, si−(x−1), . . . , si of the segment i which we want to
classify as features for si. In this case the features of the
previous segments serve us (primarily our machine learning
algorithm) as additional information’s for our analysis. How
much these feature information’s are relevant and how many
segments we must consider has be analyzed experimentally.

The organization of the training data is shown in Table 1.
Now we use all extracted features of such a set of segments
as training data. Every segment has its own row with its own
features and additional features of previous segments. Each
row in this table also contains the class as entry in the column
named label. This column contains class which later on will
be learned by the machine learning algorithm. For example
row 1 has the label smooth as class for segment S1.

fSi−2
fSi−1

fSi
label(Si)

- fS0
fS1

smooth
fS0

fS1
fS2

smooth
fS1

fS2
fS3

smooth
fS2

fS3
fS4

rough
...

...
...

...

Table 1: This table illustrates how the features of each seg-
ment are arranged in order to generate a training set of data

We want to evaluate how well the classifiers can learn from
the provided data and which features and parameters influ-
ence the performance of these classifiers. The goal is to eval-
uate whether it is possible at all to learn from the data and
if so, which are the best parameters (for example segment
length, number of segments to be included in the table).

As raw data we recorded one route several times. The route
for direct surface classification was recorded 16 times and
leads through urban terrain mostly the city of Bonn and they
have a length of approximate 13-14km per track (the devia-
tion in length results from the GPS inaccuracy). Each track
was labeled for classification by hand with the tool presented
in [Guc et al., 2008].

The previously mentioned segment arrangement
si−x, si−(x−1), . . . , si will further be called Sline which
only consist of previous segments and where i is our current
position. For the segments length , The other Fixed segment
length is fixed from the beginning (during the evaluation
fixed values of 1m, 2m, 5m, 10m, 15m and 20m are used).
For the fixed length parameter the amount of acceleration



values can vary, because the amount of values is speed
dependant. For classification we will use two different
Algorithms the K-Nearest-Neighbor and the Naı̈ve Bayesian
Classifier. Five different features were extracted from
the training data :speed, inclination, acceleration mean,
acceleration variance, acceleration standard deviation.

The following table shows a compact overview of all pa-
rameters which were evaluated.

Parameter type Parameter Value
ML-algorithm K-NN, Naive Bayes

segments lengths variabe length: gps
fixed length: 1m, 2m, 5m, 10m, 15m, 20m

number of segments 3, 5, 7, 9, 11, 13
extracted features inclination, speed, acceleration (mean, variance, std)

Table 2: This table gives an overview of all parameters which
were changed during evaluation. The acceleration contains
three features, acceleration-mean, -variance and -standard de-
viation)

To measure the performance of the classification algorithm
on the evaluation data, a 10-folded cross-validation was in-
cluded. A N -folded cross validation splits the test data into
N equally large sets and then uses N − 1 set for training to
classifier and 1 set for validating the learned concept this is re-
peated N times where for every iteration a different set of the
N sets is used for validation. At the end a confusion matrix
is provided from the cross-validation module which consists
of the average performance values of the classification.

Additionally we performed a feature selection optimization
in order to find the best feature combination. This optimiza-
tion allows to find a feature combination wich only contains
features which influence the learning algorithm positivly and
result in hoch accuracy. Features which confuse the learning
scheme will not be selected anymore. We found thaht the pre-
viously mentioned speed and inclination feature confuses the
learning scheme and results in performances which are worse
than the corresponding kappa statistics.

true smooth true bumpy true rough class precision
pred. smooth 5785 882 92 85,590%
pred. bumpy 836 1052 62 53,949%
pred. rough 151 110 492 65,339%

class recall 85,425% 51,468% 76,161% accuracy: 77,457%

Table 3

The classification performance for the Naive Bayes and the
K-NN were almost similar, but the K-NN performed (on av-
erage) slightly better than the Naive Bayes.

For K-NN algorithm, the performance increases with an
increasing number of the segments which are considered
for classification. The Naive Bayes classifier, however, has
a more constant performance, independently of the num-
ber of segments included in the table. The evaluation also
showed that the classification results which use longer seg-
ments lengths (15m and 20m) perform much better than the
ones with short segment length’s (2m). When looking at the

influences of all features, we observed that the speed feature
does not contribute to the classification. The inclination fea-
ture, even worse, confuses the classifier.

The best results (table 3) are achieved with the features ac-
celeration (mean, variance, standard deviation) and a segment
length of 20m and 13 segments must be considered for classi-
fication. The used segment setup is the Sline setup. The cor-
responding kappa statistic achieves an accuracy of 56,357%
which makes a difference of 21,101% between the classifier
and its kappa statistic.

The overall results of the classification (at best 78%) are
not very satisfying for a classification model. We will see in
section 2.2 that the bump detection just based on GPS-defined
segments performs much better.

2.2 Bump detection based classification
In this approach, we first consider the detection of sin-
gle bumps or potholes. The classifier in this first just dis-
tinguishes the two classes: ”bump” and ”no bump”. For
the bump classification a different route was selected and
recorded 15 times. Each of them has a length between 110m
and 130m per track (here the deviation in length also results
from the GPS inaccuracy). Again each track was labeled for
classification by hand via the already mentioned annotator
tool.

The performance of the bump classification works out
much better compared to the highest accuracy of the sur-
face classification. Again, the feature ”speed” turned out to
be irrelevant and the feature ”inclination” was confusing the
classifier. It was also observed that (for surface- not bump-
classification), the more segments are considered the more
the accuracy declines. The reason for this is that the longer
the considered area the more unimportant information is con-
tained in the data which should be classified. In compari-
son to the surface classification, the bump classification needs
shorter segment length’s (1m to 5m) to reach high classifica-
tion accuracy. The longer the segment lengths, the worse the
classification performance gets. The long segment also con-
fuse the classification algorithm, this was verified by com-
paring the results of the classification with the corresponding
kappa statistic. The best result were achieved with the seg-
ment length GPS parameter. This is quite expected, because
”bumps” are short term events and GPS-based segmentation
(i.e. every two succeeding GPS points define a segment) is
the smallest achievable spatial granularity.

true no bump true bump class precision
pred. no bump 404 6 98,537%

pred. bump 2 29 93,548%

class recall 99,507% 82,857% accuracy: 98,186%

Table 4

As we can see it is indeed possible to do pothole and
bumpy detection with a very high accuracy, just using the
Naive Bayes Classifier on a single segment. This led us to
extend this simple approach to be applicable in road surface



classification, with the three classes ”smooth”, ”rough”, and
”bumpy”, as described in the following.

Extended bump classification The bump detection can be
altered slightly to derive another concept for surface classi-
fication. The main idea is to count the number of bumpy
segments in a certain road section. Depending on that num-
ber, one of the classes ”smooth”, ”rough”, and ”bumpy” is
assigned as follows:
• For 0 ≤ |bumps| ≤ N

3 , the class smooth is assigned.

• For N
3 < |bumps| ≤ 2N

3 , the class rough is assigned

• For 2N
3 < |bumps| ≤ N , the class bumpy is assigned

Not surprisingly, the best results were achieved for N=3,
i.e. just considering the GPS-Segments Si−1, Siand Si+1 for
the classification of GPS-segment Si. In other words, a GPS
segment is considered as, for example, smooth, if at most one
of its preceding, the GPS-segment itself, and the succeeding
GPS-segment have a bump. The results are shown in Table 5.

true smooth true bumpy true rough class precision
pred. smooth 27865 1113 2129 89,578%
pred. bumpy 2249 1823 3315 24,678%
pred. rough 1488 537 2893 58,825%

class recall 88,175% 52,491% 34,701% accuracy: 75,051%

Table 5: Confusion matrix of a the best performing classifi-
cation which considered 3 segments during its classification

The classifier with the best accuracy for surface classifica-
tion achieves≈ 75% the classifiers from the previous sections
which directly learn the labels from the training data perform
much worse. For the extended bump classification the K-NN
classifier achieves 61% accuracy. A random classifier with
the same label distribution performs with ≈ 57% accuracy.

The confusion matrix of the extended bump classifier ex-
plains why the accuracy is not higher. The classifier is quite
good for smooth data, but it confuses rough and bumpy data.
A closer look and comparison with the recorded variances in
Figure 3 reveals that most probably, the labeling was not con-
sistent in assigning the labels ”rough” and ”bumpy”.

Figure 3: This diagram illustrates the results of inaccurate
manual data labeling

Figure 3 visualizes the acceleration variance combined
with their manual labels of a section from a recorded track.

For each label class the figure shows the manual labels (light
gray bars) and the predicted labels (dark gray bars). It can
be seen that the light gray labels for the rough class are not
modeled with sufficient detailness (on the left side of the di-
agram). It can also be seen from the acceleration values that
this label contains parts of different labels like smooth and
bumpy which were not correctly labeled. The diagram shows
that the classifier indeed is more often correct than the man-
ual label which is unfortunately the reference for the perfor-
mance. This is the main reason for the ”bad” performance of
the classifiers and explains also the confusion matrix (table
5).

2.3 Classifier implementation on the smartphone
In this section we will discuss the runtime of the whole classi-
fication process which was implemented in J2ME. The one of
initial goals of this work is to make the classification process
possible in the online mode of the client.

Once learned, the classifier has to execute the following
steps online on the smartphone.

• calculate the mean, variance and standart deviation of all
previous absolute acceleration vector values

• assemble classification data

• applies Naive Bayes classifier for bump detection

• put prediction to bump LIFO (these LIFO stores previ-
ous classifications, which are needed to calculate surface
prediction)

• put GPS coordinates and prediction for this segment to
ObservationBuilder

• builds observation

• sends observation

The execution time of the learned classifier took less than 2
ms in a JME implementation on a Nokia 5800 with an ARM
CPU execution at 400 Mhz. The accelerator delivered data
at 37 Hz, resulting in 37 values which must be evaluated at
each GPS point (given that GPS is running at 1Hz). This
means that the overall impact of the classifier on the device
performance was very low and that classifier execution fin-
ished safely before the next accelerometer values came in.

3 Conclusion
It was shown that in general a surface and a bump classifi-
cation can be realized via a machine learning approach. It
was shown how the data must be preprocessed to achieve
good classification results and which features play an impor-
tant role in this classification process. At the current state,the
classification is not as good as it could be. We showed that the
correctness and accuracy of the labels in training data should
be improved for training a machine learning algorithm. How-
ever, we also achieved very good bump detection The learned
classifier is fast enough to be executed online on a moder-
ately fast smartphone hardware and needs no further learning
or labeling. Surface classification may derived from this. As
the classifier performed best for short segments, mainly based
on the variance of the length of the acceleration vector, we



also see a good chance for just time-series based analysis ap-
proaches such as used in [Mednis et al., 2012] or [Mladenov
and Mock, 2009] to be applied for road surface classification.
As application, biking communities can profit from the pre-
sented approach for displaying route quality information on a
community portal, or cylcing-friendly cities can monitor the
surface quality of their cycling route network for detecting
damage and initiating road repair.
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